LECTURE NOTES

ON

POWER STATION ENGINEERING

BURLA
$6^{\text {TH }}$ SEMESTER,
DEPT OF MECHANICAL ENGG.,
SAI SCHOOL OF ENGINEERING
A.KATAPALI,BURLA,SAMBALPUR

POWER STATION ENGINEERING

Name of the Course: Diploma in MECHANICAL ENGINEERING			
Course code:	MET 604	Semester	6 th
Total Period:	60	Examination	3 hrs (Steam Table is allowed)
Theory periods:	4 P/W	Class Test:	20
Tutorial:	1 P/W	Teacher's Assessment:	10
Maximum marks:	100	End Semester Examination:	70

Rationale:

Bulk powers used in industries and for domestic purposes are generated in power plants. A large number of diverse and specialized equipment and system are used in a power plant should have this specialized elective course.

Course Objectives:

1. Understanding the generation of power by utilizing various energy sources.
2. Understanding the use of steam, its operation in steam power plants.
3. Understanding the nuclear energy sources and power developed in nuclear power plant.
4. Understanding the basics of gas turbine power plant, diesel engine power plant and hydro electric power plant.

1.0 Introduction:

Period

Explain concept of Central and Captive power station.
Classify power plants.

2.0 Steam Power Plant:

Layout of steam power plant.
Steam power cycle.
Explain Rankine cycle with P-V, T-S \& H-s diagram and determinethermal efficiency, Work done , work ratio, and specific steam Consumption.
Solve Simple Problems.
Explain reheat cycle and regenerative cycle and combination of reheatand regenerative cycle.
Boiler Accessories: Air pre heater, Economiser, Electrostatic precipitator and superheater. Need of boiler mountings
Draught systems (Natural draught, Forced draught \& balanced draught)with their advantages \& disadvantages.
Steam prime movers:
Advantages \& disadvantages of steam turbine, Elements of steam turbine, Compounding and governing of steam turbine.
Performance of steam turbine:
Explain Thermal efficiency, Stage efficiency and Gross efficiency. Solve Simple problems.
Steam condenser:
Function of condenser, Classification of condenser (explain jet and surface condensers), function of condenser auxiliaries such as hot well, condenser extraction pump, air extraction pump, cooling water and circulating pump.

Cooling Tower:

Function and types of cooling tower, Describe the various types of cooling tower (Natural draft cooling tower and Mechanical draft cooling tower)

3.0 Nuclear Power Plant:

3.1 Classify nuclear fuel (Fissile \& fertile material)
3.2 Explain fusion and fission reaction.
3.3 Explain nuclear reactor: Components of nuclear reactor such as fuel, moderator, reflector, coolant, control rod, Shielding, reactor vessel \& their function.
3.4 Explain the working principle of PWR and BWR power plant.
3.5 Compare the nuclear and thermal plants.
3.6 Explain the disposal of nuclear waste.
4.0 Diesel engine power plant:
4.1 State the advantages and disadvantages of diesel plant.
4.2 Explain briefly different systems of diesel power plant:

Fuel storage and fuel supply system, Fuel injection system, Air supply system, Exhaust system, Cooling system, Lubrication system, Starting system, Governing system.
5.0 Hydel Power Plant:
5.1 State advantages and disadvantages of hydroelectric power plant.
5.2 Classify and Explain the general arrangement of storage type hydroelectric project and Explain its operation.

Learning Resources:

Sl. No.	Name of Authors	Title of the Book	Name of the Publisher
1	R.K Rajput	Power plant engineering	Laxmi Publication
2	P.K.Nag	Power plant engineering	TMH
3	Nagpal G.R	Power plant engineering	Khanna Publisher

Introduction :-
morrow
\rightarrow powerstation also referred an industrial facility for the as generation of electric power. power plant is also used to reffer to the engine in ships, aircraft \& other large vehicles.
D) $\rightarrow f$ ft he centre of nearly all power stations is a generator, a rotation (v) m / c that converts mechanical energy into electrical energy by creation relative motion bet a manetic field \& a conducter.
*) Energy:
Comm
$\rightarrow \mathbb{E}$ merges is defied as it is the capacity of doing work. As we already know that energy neither be created note be destorged only it can transforms from one form to another.
\rightarrow Energy Exists in varia forms. for ex Mechanical, thermal, electrical, solar, wind etc.
$\rightarrow \underset{\text { POWER }}{\circ}$ It can be defied as it is the rate of flow of energies with respect to time \& can state that a powerplant is a unit built for production \& delivery of a flow of mechanical\& electrical energy.
3ontres as 霆merny:
There are various types of energy such os -
(7) Fuel
(a) solid: -coal
(b) liquid: petrol, diesel, kirosine etc
(C) gases $\div ~ H P G \& ~ C N G$
(2) Energy stored in water that is Hydraulic Energy.
(3) Necluar Energy.
(A) Wind power Hinergy.
(8) Therm electric power.
(8) solar Energy.
(6) Tidal power 芭nergy.
(A) ereothermal energy

TYPES OF POWER STATION:
mom on mm mm
\rightarrow The power stations are classified into 2 types.
(1) central power station
(2) captive power station.
(i) central power station:-
mon m
\rightarrow The electrical energy available from these stations is meant for general sale to the customers who wish to purchase it.
(2) Captive power station:-
mom m
\rightarrow This type of power station is run by a manufacturing company for its won use \& its OP is not available for general sate
(-7) Fuel:
\rightarrow Ebenerally fuels are the substance which are used for generating the heat energy by conversion.
\rightarrow The principle conversible elements of each fuel are carbon \& hydrogen.
\rightarrow The fuels are classified into 5 different types.
(a) solid Fuel (coal, cone)
(b) liquid fuel (diesel, petrol, kirosine)
(c) gaseous fuel CLPG, CNG)

1. solid fuels:
\rightarrow Coal:- The main constiventy of coal are carbon, hydrogen, onyaen, nitrogen, sulphur, moisture \&s astr. Coal passes through different stages during its formation from vegetation. Different stages of coals are
2. peat
3. Lignite or brown coals
4. Bituminous.
5. semi bituminous.
6. fllnthraxide.
7. Peat $\div \mathbb{N}$ is the list stage in the formation of coal. It contains huge amount of moisture therefore it is dryed for about one to two months before it is put to
\rightarrow use. in Russia.
8. Li quite or brown coals:rom \quad mom
$\Rightarrow \rightarrow$ These are the intermediate stage bet the peat \& coal.
$\rightarrow \rightarrow$ These are associated with high moisture, high ash \& lowe

- heat containts.
\rightarrow Lignites are usually amorphous in char. \& impose.
transport difficulties as they break easily.

3. Bituminous coals:-
burns with 10 ng
\Rightarrow It burns with 10 no, Yellow \& smoking flames \& has high percentage of volatile matter.
\rightarrow The calorific value of bituminous coal is $31350 \mathrm{~kg} / \mathrm{kg}$.
\rightarrow It max be of two types (1) caning
A. semi bituminous coal:- (2) Noncaking
$9 \rightarrow$ It burns with a very small amount of smoke.
$3 \rightarrow \mathbb{~ c o n t a i n g ~} 15-20 \%$ of volatile matter.
, \rightarrow It is sorter than anthraside.
4. Anthracite : mom
\rightarrow at is very hard coal \& has a shining black lustre.
\rightarrow It ignites slowly unless the furnesh temp. is high, \rightarrow it ty noncaking \& has fixed percentage of carbon. \rightarrow it burns either with very short blue flames or without Flames.
\rightarrow The calorific value of this fuel is $35500 \mathrm{kH} / \mathrm{kg}$. \& as such is very suitable for steam generation.

- Coke :
mom

1-mt is the solid residue lett after the destructive distilation of wood or certain kinds of coals
2- It is mainly used in blast furnance to produce heat \& at the same time
3- It consist of carbon, supper, small quantity of S_{2}, N_{2}. \& P.

- Energy stored an Water:rom mm m
\rightarrow The energy contain in flowing of water is a form of hydraulic energy or in the form of mechanical energy, It may exist as the kinetic energy or as potential energy of the water at some elevation w.r. to a lower dattom level. \rightarrow Hydraulic plants are slocoly increase in order, although the no of nerve plants of this type built is quite small.
- Water power is quite chlefe where water is available in abundance.
\rightarrow Although the capital cost of hydroelectric powerplant is higher as compare to other types of power plants.
y. Neuclar energy (necluar power) ! mm m
\rightarrow It is the large amount of energy that can be released from a small mass of active material.
\rightarrow Complete fission of 1 kn of uranium contains the energy equivalent of 4500 tones of coal or 2000 tones of oct.
\rightarrow The Necluar power is not only available in abundance but it is - Cheaper than the power generated by conventional sources.
- hind power :
rm rom
$\Rightarrow \rightarrow$ The man has been served by the power from winds for \Rightarrow many centuries but total amount of energy generated in this manner
\rightarrow is small.
$\Rightarrow \rightarrow$ The expence of installation \& variability of operation have tended to limit. The use of wind mill.
$\rightarrow \rightarrow$ In india the wind velocity a long coast line has a range $10-16$ kmph \& a survey of wind power has revealed that wind power is capable of exploitation for pumping water \Rightarrow From deep wells or for generating small amount of electric \Rightarrow energy.
$\Rightarrow \rightarrow$ Modern wind mills are capable of working on velocities as lace \Rightarrow as $3-7 \mathrm{kmph}$ while maxm ettieiencs is attained at $10-12 \mathrm{kmph}$
\Rightarrow eharectersties of wind power / energy:-
$9 \mathrm{~m} m m \mathrm{~m} m \mathrm{~m} m \mathrm{~m}$
\Rightarrow (1) No fuel provision \& transport are required in wind energy \rightarrow system.
\rightarrow (2) It is a renewable source of energy.
(3) Wind power systems are nonpolluting.
(4) Wind power systems, upto a feu e hue, costs can be competateve: (2) with convectional electricity.
- Tidal power energy : cm cm mm

$1 \rightarrow$ The vise of fall of tides offers a means for storing water at the rise \& discharging the water at fall.
$2 \rightarrow$ The use of tides for electric power generation is partical in a fere favourable y situated sites where the geography of an inlet of bay favours the construction of a large skilled hydroelectric plant.
$3 \rightarrow$ To harness the tides, a dam would be built across the mouth of the bay in which large sates \& love head hydraulic. turbine wound be installed.
A \rightarrow flt the time of high tide the gets are opened automatically enter the tide has received the turbine is operated \& then the water is discharging to the tidal basin then the sates are closed.

5) With this type of arrangement the generation of electric power is not contineous.

- Geothermal power:
comm cm
\rightarrow in many places on the earth natural steam escapes from surface vents. such natural steal h wells suggest the posibility of heat or geothermal energy.
D \rightarrow There are probably many places where no natural steam vent or * hot springs are sowing, deep drillings might tap a source of * underground steam.
- Thermoelectric power:
rrorrorm mm
When the two ends of a loop of two dissimilars metals are held at different tempratures, an electromotive force To is developed \& the current closed into the loop. The method by © splection of suitable material can also be used for power \Rightarrow generation. This method involves low initial cost \& nealisible \geqslant operating cost.
- Solar power $\frac{A}{\text { a }}$
$\Rightarrow 1 \mathrm{~mm} \mathrm{rrm}$
\Rightarrow (1) \#f lot of work to be utilized solar energy for generation of
\Rightarrow steam has been done in some countries.
(2) E\# serious fault of this source of energy is, of course
\Rightarrow that it is effective only during the daytime, so that if a
\Rightarrow contineous op is needed some large reserves of energy such
\Rightarrow as a storage battery must be drawer upon at night.
(3) (3) Ellis the opP is handicaped if there is clouding weather.
(4) (A) Neverthiess, there are some locations in the world where strong
- solar radiation is received very regularly, such locations

9) Offer more intrest to the solar power plant builders.
(5) For developing solar energy two ways have been explod

2 that is the glass lence \& the reflector.
(6) These device concentrate the solar rays to the focal point which is charecterised by a high degree of it which can be
utilised to boil water \& generate steam.
(7) cons for utilization of solar energy in india are favorable. since for nearly 6 months of the year, sunshine is uninterrupted during the day. While in the other six months cloudily weather.
(8) Thus a coordination of solar energy with water power can provide a workable plant for most places in india.

\rightarrow \& steam power plant Consist of the following main components
(1) Boiler
\rightarrow
(2) steam turbine
\Rightarrow
(3) condenser
\Rightarrow
(4) Ied water pump.
-2
(5) Electric generator.
\Rightarrow
(C) cooling tower
(7) Water circulating pump
(8) Chimney
$\Rightarrow \rightarrow$ The above diagram represents the simplified cycle \& the basic \Rightarrow components of a steam powerplant. To facilitate the themodymamic analysis the whole plant can be devided into 4 major substations. - identified tied as subsystem A, B, C \& D.
9) subsystem $A \div$ It consists of a furnesb \& chimney. Its fun ${ }^{c}$ is to supply heat energy to the boiler. The heat energy max ? be obtained by burring of fossil fuel.
18
necluar reaction or by solar energy.
subsystem $\mathbb{B} \div$ in subsystem \mathbb{B} the working fluid passes through $\frac{1}{T}$ the series of A interconnected components \& Power is generated in $\frac{I}{4}$ this cycle so that this cycle is rettered as steam cycle or power cycle.
\rightarrow In this subsystem the heat energy: is converted into the mechanical work. It, consists of a boiler, a turbine, a condenser \& a heat pump.
\rightarrow The steam generated in the boiler is passed to the turbine where" it expands to a lower pressure thus power is generated.
\rightarrow The steam -living the turbine is passed through the condenser where it condenses through the cooling water.
\rightarrow The cooling water is circulated in the condenser with the hep of subsystem C.
\rightarrow The condensate is then recirculated to the boiler with the help of feed water pump.
subsystem $C \div$ It consist of the cooling tower \& water recirculation pump. The circulated warm water from the condenser is sent to the cooling tower where its heat energy is rejected to the atmosphere.
Subsystem $(1) \div$ The subsystem (D) pertains to generation of electrical
mammon energy \& thus consist of a generator. The generated electricity is supplied to a power arid through the substations.

- performance parameters of steam power cycle ${ }^{\circ}$
(i)- Thermal efficiency : mom mmm '
\rightarrow The thermal efficiency of steam power cycle is defined as it is the ratio bet net work θ / P \& the heat I / P
\rightarrow Mathematically $\eta_{\text {lith }}=\frac{\text { W net }_{\text {net }}}{Q_{\text {in }}}$
(2) Back work ration :

$$
m \mathrm{~mm}
$$

$\Rightarrow \rightarrow$ It is the ratio bet the pump works \& turbine work D then bore $=\frac{W P}{W t}$
(3) Work ratio \div mm mm
\rightarrow It is defind as it is the ratio bet I net work output \& the turbine work.

$$
\begin{aligned}
\text { work done } & =\frac{W_{\text {net }}}{W_{t}} \\
& =\frac{W_{t}-W P}{W_{t}}=1-\frac{W_{p}}{W T}=1-\text { bore. }
\end{aligned}
$$

(A) specific steam consumption: mm m mom.
$\Rightarrow \rightarrow$ it is the amount of steam required to produce orekwh of Power or 3600 kJ of work is known as specific. steam consumption (SSC) it is also called steam raf
\Rightarrow It if denoted by (SSC) \& it is expressed as

$3 \rightarrow$ The steam power plant is actually operated by rankine cycle. \Rightarrow The rankine vapour cycle is more partical than the other cycle.
\Rightarrow It consist of 4 Major components for generating the power.
\rightarrow The different components are a steam boiler known as
9) steam generator, a steam turbine, a condenser \& a pump. - Here in this cycle we are using a pump instead of a - Compressor operating in carnot Cycle.
$\rightarrow \rightarrow$ The high pressure \& temp saturated steam generating from A) the boiter is passes into the turbine where it gets expanding.

at expansion the steam looses its temp \& pressure. The lowe pressure steam then enters into the condenser. In the steam is comerted into the condenser there is cooling water arrangement for condensing the law pressure steam. After that The steam is converted into the liquid form at the exist of a condenser.
\rightarrow Then the condensate is allowed to flow through the pump ashore it compreses of increase the pressure.
\rightarrow The above diagram indicates the skimatic arrangement of rankine cycle with P-Y \& top \& His coordinates
\rightarrow The rankine Cycle is operating in A different processes named a) process $1-2 \rightarrow$ Isentropic expansion process.
\rightarrow This process is known as Isentropic expansion process

$$
\left.w\right|_{t}=h_{1}-h_{2}^{\prime}
$$

process $2-3 \rightarrow$ constant pressure heat rejection process.

$$
\rightarrow \text { Here } Q \text { re j }=h_{2}-h_{3}
$$

\Rightarrow process $3-4 \rightarrow$ Isentropic compression process
$\Rightarrow \rightarrow$ Here $W_{p}=h_{A}-h_{3}$.
process $\mathrm{A}-1 \rightarrow$ constant pressure heat addition process.
\rightarrow Here Gad $=h_{1}-h_{A}$.
\Rightarrow We know that $\eta_{\text {th }}=1-\frac{\text { Qout }}{Q_{\text {in }}}$

$$
=1-\frac{h_{0}-h_{3}}{h_{1}-h_{1}}
$$

\rightarrow Here at state-1 \div

$$
\begin{aligned}
p 1 & =? \\
h_{1}=h_{21} & =\mathrm{kJ} / \mathrm{kq} \\
s_{1}=S_{21} & =\mathrm{kJ} / \mathrm{kqk}
\end{aligned}
$$

\rightarrow at state-2

$$
\begin{aligned}
& S_{1}=S_{2} \\
& h_{F_{2}}=k J / k g \\
& h F_{2}=k J / k g . \\
& S F_{2}=k J / k g k \\
& S F_{2}=k J / k g k .
\end{aligned}
$$

\rightarrow at state-3:

\rightarrow at state-3.

$$
\begin{aligned}
& h_{3}=h_{73} \\
& \quad v f_{3}=?
\end{aligned}
$$

\rightarrow at state-4 \div

$$
\begin{aligned}
W_{p} & =h_{4}-h_{3} \\
\Rightarrow h_{4} & =h_{p}-h_{3} \\
k I_{p} & =V_{7}\left(p_{4}-p_{3}\right) \\
& =V_{7}\left(p_{1}-p_{2}\right)
\end{aligned}
$$

Q) A steam power plant has boiler \& condenser pressure of $60 \mathrm{bar} \& 0.1 \mathrm{bar}$ respectively, steam coming out of the boiler is dis \& saturated. The plant operates on the rankine cycle. Calculate the thermal efficiency of the point.

Riven) Here $P 1=60$ bar $=60 \times 100$

$$
\begin{aligned}
\& P_{2} & =0.1 \text { bar }=6000 \\
& =0.1 \times 100=10 .
\end{aligned}
$$

\rightarrow Here at state $1 \div$

$$
\begin{aligned}
& p_{1}=60 \mathrm{bar} \\
& h_{1}=h_{2}=2784.3 \mathrm{~kJ} / \mathrm{kg} \\
& s_{1}=s_{2}=5.8892 \mathrm{~kJ} / \mathrm{kg} \mathrm{k} .
\end{aligned}
$$

\rightarrow Then at state $2 \div$

$$
\begin{aligned}
P_{2} & =0.1 \mathrm{bar} \\
h_{72} & =191.83 \mathrm{~kJ} / \mathrm{kg} \\
h_{72} & =2392.8 \mathrm{~kJ} / \mathrm{kg} \\
S 7_{2} & =0.6493 \mathrm{~kJ} / \mathrm{gqk} . \\
s 7 q_{2} & =7.5009 \mathrm{~kJ} / \mathrm{kgk} .
\end{aligned}
$$

\rightarrow Then at state $5 \div$

$$
\begin{aligned}
p_{3} & =0.1 \mathrm{bar} \\
h_{3}=h_{73} & =191.85 \mathrm{~kJ} / \mathrm{kg} . \\
V_{7 y} & =0.001010 \mathrm{~m}^{3} / \mathrm{kg} .
\end{aligned}
$$

\rightarrow Then at state $4 \div$

$$
\begin{aligned}
& \text { then } \quad h_{2}=\left(h F_{2}+x h_{2} q_{2}\right) \\
& h_{2}=191.83+x \times 2392.8 \\
& \Rightarrow h_{2}=191.83+(0.6985 \times 2392.8) \\
& \Rightarrow h_{2}=1865.20 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}\left[\begin{array}{l}
S_{2}=\left(S F_{2}+x q_{2}\right) \\
5.8892=(0.6893+x \times 7.5009) \\
\Rightarrow x=\frac{5.8892-0.6493}{7.5009} \\
\Rightarrow x=0.6985 \text { (unit) less) }
\end{array}\right.
$$

$$
\therefore \text { efficiency of } \eta_{\text {it }}=1-\frac{h_{2}-h_{3}}{h_{1}-h_{4}}
$$

$$
=1-\frac{1863.20-191.83}{2784.3-197.88}
$$

$$
=0.35 \%
$$

$$
=35 \% \text { Dis }
$$

$$
\begin{aligned}
& W_{p}=h_{4}-h_{x} \\
& W_{P}=V F_{3}\left(P_{1}-P_{2}\right) \\
& \begin{array}{l}
=0.001010(6000-10) \\
=6.049 \mathrm{~kJ} 5 \mathrm{~kg}
\end{array} \\
& h_{4}=W_{P}-h_{3} \\
& \text { approx }=6.05 \mathrm{~kJ} / \mathrm{kg} . \\
& =6.05+\quad 191.83 \\
& =\quad 197.88 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

\rightarrow A steam power plant works bet 1 pressure 40 bar \& 0.05 bar. * St the steam supplied is dry saturated \& the cycle ot \Rightarrow operation is rankine cycle, sind the cycle efficiency.
\rightarrow Here $P_{1}=40 \mathrm{bar}$

$$
\begin{aligned}
& =40 \times 100=4000 \\
P_{2} & =0.05 \mathrm{ban} \\
& =0.05 \times 100=5
\end{aligned}
$$

\rightarrow In process $1 \div$

$$
\begin{aligned}
& P_{1}=40 \text { bar } \\
& h_{1}=h_{2}=2801.4 \mathrm{~kJ} / \mathrm{kg} \\
& S_{1}=2_{2}=6.0701 \mathrm{~kJ} / \mathrm{kg} k
\end{aligned}
$$

$\Rightarrow \rightarrow$ in state- $2 \div$

$$
\begin{array}{ll}
\Rightarrow & P_{2}=0.05 \mathrm{ban} \\
\Rightarrow & h_{2}=137.82 \mathrm{kJ1kg} \\
\Rightarrow & h_{7} g_{2}=2423.7 \mathrm{~kJ} / \mathrm{kg} \\
\Rightarrow & S_{2}=0.4764 \mathrm{~kJ} / \mathrm{kgg} \\
\Rightarrow & S_{2} q_{2}=7.9187 \mathrm{~kJ} / \mathrm{kg} \mathrm{k} . \\
\Rightarrow & S_{2}=57_{2}+\times 5792 \\
\Rightarrow & 6.0701=0.4764+x \times 7.9187 \\
\Rightarrow & x=\frac{6.0701-0.4764}{\Rightarrow} \\
\Rightarrow & 7.9187
\end{array}
$$

$$
\begin{aligned}
h_{2} & =h F_{2}+x h_{1} q_{2} \\
h_{2} & =137.82+0.7063 \times 2423.7 \\
& =1849.6 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

At state $3 \div P_{2}=0.05$ bar

$$
\begin{aligned}
& h_{3}=h+3 \quad v+3=0.001005 \mathrm{~m}^{3} / \mathrm{kg} \\
& =137.82 \mathrm{ky} / \mathrm{kg}
\end{aligned}
$$

At state $4 \div$

$$
\begin{aligned}
& W_{P}=h_{4}-h_{3} \\
& h_{A}=W P+h_{3} \\
& =4.014+157.82 \\
& =141.854 \mathrm{~kJ} / \mathrm{kg} . \\
& \omega_{1} P=V f_{3}\left(P_{1}-P_{2}\right) \\
& =0.001005(4000-5) \\
& =4.014 \\
& =0004 \\
& \text { with }=1-\frac{h_{2}-h_{3}}{h_{1}-h_{1}} \\
& =1-\frac{1849.6-137.82}{2801.4-141.834} \\
& =0.35 \%=35 \%
\end{aligned}
$$

*) Reheat cycle:
rom dm
\rightarrow If the steam expands completly in a single stage then steam coming out from the turbine is very weight wet. The wet steam carries sespendent moisture particle which are heavier than the vapour particles, thus deposited on the blades \& causing its erosion.
\rightarrow In order to increase the life of the turbine blades it is necessary to keep the steam dry during its expansion.
\rightarrow It is down by allowing the steam to expand to an intermediate pressure in a high pressure turbine, \& then taking it out \& sending back to the bolter where it is reheated at constant pressure, until it reaches the inlet temp. of the st stage as shwon in sximatic diagram.
\rightarrow This process is called reheating \& the cycle is known as reheat \Longrightarrow rankine cy्रcle.
\longrightarrow Due to reheating the work $0 / \mathrm{p}$ of the turbine increases, thus \Longrightarrow improving the thermal efficiency.
\Rightarrow Working \because The reheat cycle is designed to tax \Rightarrow advantage of
\Rightarrow higher boiler pressure by eleminating the proplem of excessive, \Rightarrow moisture content in the exhaust os

The working of reheat cycle consist of a
\Rightarrow boiler, high pressure turbine, louepressure turbine, condenser \& a heat water pump. The above skimatic diagram represents the steam enters at state -1 in the dst stage of turbine (HP) \& expands isentropically to the state -2.

Ant state 2 the quality of steam is either slidely dry or Just wet \& thus it is taken back in the boiler \& is reheated to the original superheated temp ty.
then this reheated steam is further expanded in the lowe. pressure turbine in the process $3-4$. cycle.

Then the cycle is continued as the rankine

Regenerative cycle:-
\rightarrow In a simple rankine cycle is significant amount of heat is added tor sensible heating of compressed liquid coming out the pump. \rightarrow The mean temp at which sensible heat added is much lower than the source temp. thus the efficiency of the rankine cycle is much lower than that of carnot vapour power. Cycle.
\rightarrow The efficiency of the rankine cycle can be improved by heating the feed water regeneratively.
Working:- The mean temp of heat add' in the rankine cycle roup can be improved by increasing the heat supplied at high temp such as increasing suer heat, increasing boiler pressure 2 reheat.
$\rightarrow \rightarrow$ The mean temp θ_{1} the heat addition can also be increased by \rightarrow decreasing the amount of heat supplied at lower temps.
$\Rightarrow \rightarrow$ in actual practice the advantage of ho regenerative heating
\Rightarrow principle is used by extracting a part of expanded steam
\Rightarrow from the twine \& it is used for heating of teed water in

* separate feed water heaters.
\rightarrow This arrangement doenn't reduce the

Water level indicator $\frac{\rho}{?}$
mr cm rom
$1 \rightarrow$ The water level indicator is located infront of the boiler in such position that the level of water can easily be seen to the attaindaned.
\rightarrow Two vericties of water level indicators are used on all boilers.
\rightarrow A water level indicator consist of a strong glass tube with reading.
\rightarrow The upper \& lower ends of these tubes are connected to the two mum metal. The upper pipe has a steam cock r \& the lower pipe has a water cock.
\rightarrow During, the boiler operation the steam cock \& the water To cock r remain opened.
\rightarrow In case the glass tube brakes accidentally the water \&
\rightarrow steam simontaneously. rush out through the gran metal pipes.
\Rightarrow Pressure gauge:-
$\rightarrow 1$ - At pressure gauge is fitted infront of the boiler in such

- a position that the operator Can convineantly readit.
\rightarrow It reads the pressure of steam in the boiler \& is connected 3 to the steam space by a siphon tube.
\rightarrow 2- The most commonly used pressure gauge is bordentubepressure

3-The borden tube pressure, gauge consist of an eliptical spring, one end of this tube is connected to the siphon tube \& the other end is connected by leavers \& gears to the pointer. 4-When the fluid pressure is acts on the bourdon tube it tries to make its crossection change. from eliptical to circular. 5- in this process the leaver end of the tube moves out as indicated by an arroul.
6- The tube movement is magnified by the mechanism \& given to pointer to move over a circular skell \& indicating the pressure.
Fusible plug: at is very important safety device which protects the tire tube boiler shell against over heating. \rightarrow It is located cost above the funest in the boiler, it consist of a gunmetal plug fixed in a qua metal body wish a fusible molten metal.

(fusible plug)
morn)
$5 \rightarrow$ During the normal boiler operation the fusible plug is covered by water but when the water level falls too lowe in the boiler it uncovers the fusible plug.
$\geqslant \rightarrow$ The furness gases heat of the plug the fusible metal of the - plug melts.
\rightarrow The water then rush through the hole \& exting cist the Fire before any major damage occurs to the boiler due to over heating.
Feed check valve:
mm mm cm
\rightarrow The feed check valve is rifted to the boiler slightly below the \rightarrow working level in the boiler.
$>\rightarrow$ It is used to supply high pressure feed water through the \rightarrow boiler.
$\Rightarrow \rightarrow$ it also prevents the returning of feed water from the: \Rightarrow boiler.
$\Rightarrow \rightarrow$ A feed checker valve consist of two values (1) feed value.
\Rightarrow the reed value is operated by a hand wheel for check valve.
\Rightarrow closing where as the check valve operates automatically 4
\Rightarrow down under the pressure difference of water.

steam stock valve :-
cm m mm
\rightarrow The steam stock value is located on the highest part of the steam space.
\rightarrow It regulates the steam supply for use. The sean stock valve can be operated manually or automatically.
\rightarrow \& hand operated steam stock valve is shown a bellove figure \& consist of a cast iron body \& two flanges at right angles.
\rightarrow Ore range is fastened to the boiler shell \& the other ix fastened to the steam pipe.
\rightarrow Ell steel valve connects the hand wheel through the spindle. When the hand wheel is rotated the spindle also rotated \& carries the valve up \& dower.

Blow of cock \div
mm m on
The fun of the blow of cock is to discharge oud \& other sediments deposited an the bottom most part of the water space in the boiler, while the boiler is in operation. No It can also be used to drain-of the boiler water. \rightarrow Hence it is manted at the lowest part of the boiler. \rightarrow When it is open water under the pressure rushes out thus carrying sediment \& mud.
Manhole \& mud bon:

\rightarrow The man hole is provided on the boiler shell at a convineant position so that a person can enter through if, inside the boiler for cleaning \& inspection purpose.
\rightarrow The mud box is placed at the bottom of the boiler to collect nod discharged to the blow of cock.

Boiler accessories
$\Longrightarrow \mathrm{mm}$
$\rightarrow \rightarrow$ The boiler accessories are those devices cohich are heated either inside or outside the boiler to improve the performance of a bottler.
\rightarrow The accessories are mounted on the boiler or in the boiler to increas its efficiency.

The following accessories are normally user on a modern boiler.
(1) superheater
(2) Economiser
(5) Ail preheater
(4) Electro static precipitafor
superheater $\%$
mom
\rightarrow It is a heat exchanger in which products of it of convertion $=$ are utilized to dry the weight steam \& to make it superheated by increasing its temp.
\rightarrow During superheating of the steam pressure remains constant \& its volume \& temp increase.
\rightarrow A superheater consist of a set of small diameter u-tubes in which steam flows \& takes up the heat from bot flue gasses. \rightarrow superheaters are classified as convective, radiant \& of combination type.
\rightarrow In the convective superheater the heat is transfer to the surface of the superheafer by convection.
\rightarrow In a radiant superheater the heat of convention is transferred to the surface of the superheater los thermal radiation, There are used in high pressure boilers.
\rightarrow In a combination type of super heater the heat is transferred to the surface of the tubes by both modes of heat transfer. The radiant superheaters are occusanally used.

Economiser:-
नmrrom
$\cdots \rightarrow$ AD economiser is a heat exchanger caused for boating the feed water before it enters to the boiler.
\rightarrow The economiser recovers some of wast heat of hot flue gasses going to the chminey thus it helps in improving the boiler efficiency.
\rightarrow It is placed in the path of flue gasses at the backside of the boiler Just before the airs preheafer.
\rightarrow The most commonly used economiser is greens economiser \& is shown in below fig.
(t) greeny economizer consist of a set of vertical castivon pipes - Joint with horizontal lower \& upper headers.
(B) The cad feed water flows through the vertical pipes via the lower header.
(c) The hot Flue gasses passover then transferring heat to the water. The heated water is supplied to the boiler via the upper header.
\rightarrow Each economiser is equipped with a safety valve, a drain valve, a release Valve, pressure gauge \& thermometers.
Alliv preheater:
\rightarrow The fac of an airpreheater is similar to that of economiser. It recovers some portion of the waste heat of hot flue gasses going to the chimney \& transfers the same to the fresh air before it enters the convention chamber.
\rightarrow (Due to preheating of air the furnesh temp increases. It vesulty in rapid convention of fuel with less smoke \& ash. \rightarrow The high furnance temprature can permit a low quade fuel with less atmospheric pollution. The air preheater is Placed between the economiser \& the chimney.

Electrostatic precipitator:-
mom mm mom
\rightarrow An electro static precipitator is a filtaration device that removes fine particles (like dust \& smoke).
\rightarrow The working principle of electro static precipitator is quiet simple. It has two sets of electrodes one is (ave) \& another is (-ve).
$\rightarrow \rightarrow$ The -ve electrodes are in the form of rod or wireness. \rightarrow tee electrodes are in the form ot plates.
$\Rightarrow \rightarrow$ The the plates \& -re electrodes are placed vertically in \Rightarrow the electrostatic precipitator. Alternatively one , another.
\rightarrow The medium of the electrodes is air \& due to high - neaeterity of -ie electrodes there may be a Corona discharge porround the -ve wive mesh.
\Rightarrow Eth electro static precipitator doesn't contribute directly to the \Rightarrow production of electricity in the thermal power plant, but it \Rightarrow helps to keep the atmosphere clean.
\Rightarrow Hoppers are fitted below the ESP chamber for collecting dust \Rightarrow parties.
\Rightarrow
\rightarrow
\Longrightarrow
\Longrightarrow
-0
\rightarrow
g
,
,
Io
(Draught system/ Boiler draught \div ram m mom
\rightarrow We have already discussed the formation of steam \& the converstion of fuels, it may be noted that the rate of steam generation in a boiler is depend upon the rate at which the fuel is bunt.
\rightarrow The rate of fuel burning depends upon the availablity of oxygen or in other words availability of fresh air.
\rightarrow The fresh air will enter the fuel bed, if the qa uses of combersion are exhausted from the combersion chamber of the boiler.
\rightarrow This is possible only if a difference of pressure is maintained. this difference of pressure is known a draught \& the system is known as boiler draught system.
purposes of boiler draught :
\rightarrow The main objects of producing draught in a boiler are -
(1) to provide an adiquet supply of air for fuel conversion.
(a) to exhaust the gasses of Comvertion from the " chamber.
(3) To discharge these gasses to the atonosphere through the chimney.
classification \div in general the draught system may be
orommorm classified into the following two types.
(1) Natural Draught
(2) Artificial Draught

3
Natural (D)racight:
\rightarrow It is the draught produced by a chimney along due to the: difference or the densities bet the hot gasses inside the chimney \& cold atmospheric are outside it. The outside aet is flow through the furnance into the chimney \& it will puss the hot gasses to pass through the chimney. It is also known as chimney draught.
\rightarrow Artificial draught : rom mon
$\Rightarrow \rightarrow$ The Artificial draught may be induced or forced. In this > case the draught produced by a fan or blower is known as fan draught. The artificial draught is provided when the \rightarrow natural draught is not sufficient.

Comparision bet ${ }^{\wedge}$.
forced draught rom m
$\Rightarrow \rightarrow$ The fan is placed before the \Longrightarrow fire grate.
$\rightarrow \rightarrow$ The pressure inside the furnance
5 , above the atmospheric pressure.
$\rightarrow \rightarrow$ it sucks the Fresh air Q
\Rightarrow Forces it into the convertion?
\rightarrow chamber.
$\Rightarrow \rightarrow$ It requires less power as the

- Fan has to handle fresh air 3) only. moreover volume of air 9) handle is less because of lowe - temp.
\rightarrow The flow of at r through the furnance is more uniform

Induced draught
\rightarrow The fan is placed after the five grate.
\rightarrow The pressure inside the furnance is below the atmospheric pressure.
\rightarrow It suck e hot gases from the convection chamber \& forces them into the chimney.
\rightarrow It requires more power ax the fan has to handle not air \& five gasses. moreover the volume of air \& gasses is more because of high temp of the air agasses.
\rightarrow The flow of air through the furaance is less uniform.
\rightarrow As the linkages are out tow oud therefore there is a serious danger of blow out when the fire doors are opened \& the tan is working.

Advantages:-
\rightarrow it is more economical.
\rightarrow it is better in control.
to The flow of air through the furnance is uniform.
\rightarrow Its rate of convertion is very high.
\rightarrow Low grade fuel can be used.
\Rightarrow It is not affected by the atmospheric temp.
\rightarrow It reduces the amount of smone.
\rightarrow it reduces the bight of chimney.
\rightarrow It increases efficient of the plant.
(Dis advantage) :-
\rightarrow initial cost is high.
\rightarrow Ruming cost is also high.
It has increased the maintainance cost.
Balanced draught: it is am improved type of draught, \& is a combination of induced \& forced draught. It is produced by running both induced \& forced draught fans simontaneowly.
steam primeover $\frac{0}{-}$ A steam twine is a device that extracts

- corm crorrmal from pressurised steam \& uses it to do useful
i) mechanical work.
$\therefore \rightarrow \rightarrow$ The steam turbine is a form of heatengine that derives much of s its impocovement in thermodynamic efficiency from the use of a multiple stages in the expansion of the steam.
$\Delta \rightarrow$ The turbine generated rotarymotion \& it is particularly suited ง to be used to drive an electrical generator.
- Advantage x :
(1) mormons
$\Delta \rightarrow$ The following are important adv. \& dis adv. of steam turbine,
T(1) Since the steam turbine is a rotary heat engine, it is
- particularly suited to be used to p drive an electrical
- generator.
-(8) Thermal efficiency of a steam engine or steam turbine is
\Rightarrow usually higher than that of a reciprocating engine.
D(5) Very high power to wet ratio. Compare to reciprocating engines.
\Rightarrow (4) Few work moving party that reciprocating engines.
(5) Steam turbines are suitable for large thermal powerplant.
\rightarrow They are made in veriety of sizes upton 1.5 que. Turbines \rightarrow used to generate electricity.
\rightarrow (b) In general turbine moves in one direction only, with
- vibration than a reciprocating engine.
((1) Steam turbines have greater reliability, particularly in app1"s 2) nehere sustained high power $0 / P$ is required.

2) Dis advantage : - Although approximately 90% of all electricity
3) generation in the world is by use of steam turbines they 2) have alp some disadvantages.
(1) Relatively high cost.
(2) The mic party are too expensive.
(3) They have longer startup than gas turbines \& chearly that reciprocating engines,
(4) Mechanically s team turbines are less efficient than reciprocating engines at part load operations.
(5) Dress responsive to changes in power demand.
(b) skilled workers are to be needed to operate \& maintain it. Elements of steam turbine.: rome coo cross
\rightarrow For the proper functioning of the steam turbine the following elements are important from the subject point of viene.
(1) Rotor or shaft
(2) Cylinder or casing
(5) Blades
(4) Bearings
(5) Broverner
(b) control valve \& safety valve
(7) Turbine turing gear
(8) Lube oil system
(a) Briand sealing system,

Rotor or shaft $\frac{\square}{\circ}$ Rotor or shaft is an integral part or the steam turbine that carries the blading to convert the thermal energy of the steam into the rotatry motion of the shaft.
\rightarrow Rotors are used to transmit torque produced in each stage. of turbine to the generator.
\rightarrow The rotor consist of rotating blades which are fastened to the wheel through a specially desiged attachment. The blades may os
be semicircuial in shape \& multiple pins to hold the blades to the disc or wheel \& these discs may be shrunk feet on to a shat.
cylinder or Casing $\frac{\rho}{\circ}$
romeo
\rightarrow The turbine cylinder have two withstand the pressure of steam \& for this reason they are robust design with think wall.
\rightarrow ID order to assemble the turbine \& to deassemble it for maintainance the casing must split in some xeays
\rightarrow To overcome the need for a very heavy flanges in high pressure Cylinder, instead of being split horizontally the entire outer casing of the high pressure turbine is shaped line barrel. Blades:
\sim ryA turbine generally consist of rows of stationary blading \& roues
\Longrightarrow of rotating rotating blading.
$\rightarrow \rightarrow$ The purpose of stationary blading is to direct the flow of \Longrightarrow passing steam to the rotating blading at the proper angle.
\Rightarrow There are two types of turbine blading
(1) Impulse blading.
(2) Reaction blading.
$\Rightarrow \rightarrow$ The size of blades of high pressure turbine is smaller than the D lowe pressure turbine.
\Rightarrow Bearings: Bearing are provided to support the turbine rotor
\Rightarrow inside housing installed in turbine shells.
\Rightarrow There are different types of bearing for small steam turbines-
O roller bearing, Jurnal bearing \& thrust bearing.
$\Rightarrow \rightarrow$ Thrust bearing is located on the mainshatt of the turbine, the
2 thrust bearing absorbs axial thrust of the turbine \& generator
g) rotors connected to the

Qrovernen:- The governor is one of the basic parts of the steam turbine its maintun (s to control the operation of steam \& the love rate of the steam,
\rightarrow The governed are of 2 types
control \& safety valve $:$
moms rum rom
(A) speed sencing eroverner \&
(B) pressure sencing boverner.
\rightarrow The control device is broadly devied into governed device \& a safety device.
\rightarrow The governed device regulates the output \& speed of the turbine generator. while safety device will protect the turbine from the outer hazards \& stops the turbine generator
quickly. quickly.
Turbine turning year system $\frac{0}{0}$
$m \mathrm{~mm} \mathrm{~cm} \mathrm{~m}$
\rightarrow During the start up of turbine, turning gear can be started \& stored by push button \& indication is also available on TCP (total control panne).
\rightarrow When turbine speed of up beyound 2800 rpm the system automatically disengaged a it will come in autostand by.
Lube oil system $\frac{b}{\circ}$ Lube oil system is designed to provide oil to lubricate all bearings.
\rightarrow To provide pressure oil for operation of the governing protection system \& for turning gear system,
\rightarrow The lube oil system mainly consist of oil resorvoied, oil ejectory, $0 i l$ pump, oil releif valve etc.
Gland seating system:
\rightarrow It is used as a precaution against steam leaking to afrosphere.
compounding \& eroverning of steam turbine:-
, compounding of steams turbine $\stackrel{\rightharpoonup}{0}$
compounding of the steam turbines is the stratege , in which energy from the steak n is extracted in a no of stages , rather than a single stage in a turbine.
\rightarrow A compounded steam turbine has multiple stages that is it has - more than one set of nozzolex \& rotors.

- Necessity/parpose:-
${ }^{1} \rightarrow$ The steam produced in the boiler has sufficiently high enthalpy v) when superheated.
$2 \rightarrow$ In all turbines the blade velocity is directly proposonal to the velosity of the steam passing over the blade.
, $5 \rightarrow$ Now if the entire energy of the steam is extracted in one
\Rightarrow stages that is if the steam is expanded from the boiler
\Rightarrow Pressure to the condenser pressure in a single stage then its
\Rightarrow velocity will be very high. Henze the velocity of the rotor can D reach to the higher limit which is too high for partical uses because of very high vibration.
s $4 \rightarrow$ Moreover at such high speeds the centrifugal force ace \Rightarrow immense, which can damage the structure of the rotor so \Rightarrow that for avoiding this the compounding of the steam turbine 3 is needed.
$\Rightarrow 5 \rightarrow$ The compounding is needed also to overcome the wastage of 2) steam
- Types : In an impulse turbine compunding can achieved ? in the following 5 ways -
(i) velocity compounding.
(2) Pressure compounding,
(3) prover velocity compunding.
* In a reaction turbine compounding can achieve only by Pressure compounding.

HYDEL POCNER PLANT

Introduction: Hydel prier plant also known as Hydro-Electric power station. Normally the power or the electricity is produced or generated from the water source.

Generation of electricity by hydropower (potential energy in stored water) is one of the cleanest methods of prodricing electric power. Hydroelectricity is the most widely resed form of renewable energy.
Advantages and Disadvantages of Hydel Power plant.
Advantages ?
(1) No full is required as potential energy in stored water is rued For electricity - generation.
(ii) Neat and Clean sorerce of energy.
(III) Very small running charges as water is available. Free of cost.
(iv) Comparatively tess maintenance is required and has Ronger Rife.
(v) Serves other prerpose too, such as irrigation.
Disadvantages :-
(1) Very high capital cost due to const ruction of dam.
(11) High cost of transmission as hydro plants are located in hilly ore as.. which ane quite away From the -
Types of Hydro - power plank: Konsumen
\rightarrow Conventional plants.
\rightarrow Pumped storage plants.
\rightarrow Run- of River plants.
General Arrangement of Storage type Hydro Electric Project:-
In general., a power-plant/: power house in hydropower plant may be divided into. thrice areas:
(1) The main powerhouse structure, no busing the generating.units and having either separate or combined generator and turbine: room.
(2) Erection bay,
(3) Service areas.

Pege-3
(1) Main Powerhouse Structure:-
\rightarrow The generator rom is the main Feature of power hour se about which other areas: are groecped.
\rightarrow It is divided into bays or blocks, with one generating remit normally Rocated in each block.
\rightarrow The width Crepstream-downstream dimension of the generator room for the indoor tejpe shout d provide for a passage wow with a minimum width of 10 feet between the generators and one powerhouse wail. \rightarrow The height of the generator room is governed by the marimuim clearance. height required for moving major items of equipments, such as parts of generators and turbines.
\rightarrow The elevation of the terrine room floor should be established so as to provide a minimum requirement of 3 feet of concrete over a steel spiral case, or a minimum roof thickness of 4. feet.

Page -4
\rightarrow In establishing the distance between the generator oed turbine tom floors, if they are not combined, the size of equipment to be handled in the turbine room, the head room between platforms in the turbine pit and the generator room floor. construction should be considered
(2) Erection Bay:
(1) In general, the erection bay should be located at the end of the generator room.
(15) However, no additional space should be requecired if the access railroad enters From the end of the powerhouse.
(iii) In cases where the elevation of the crane rail would be dependent on the requirement that a transformer with breshings in place be brought render the crane girder.
(3) Service area
(1) Service areas include: offices, control and testing rooms, storage room,
maintenance shop, aroxilliary equipment rooms. and other rooms for special ruses. (i) However in all cases an economic study which should include the cost of any added length of penstock required, should be made before deciding fo increase the space between the dam and powerhouse to accomodate these features.
(iii) The offices are freequently Rocated on ripen floors and the control room and other service rooms on Rower floors.
(iv) The most advantageous Rocation for the maintenance shop is resrally at the generator room floor level.

River

DIESUN \mathbb{E}
$\mathbb{E} \mathcal{E} G \mathbb{N} \mathbb{E}$
$\mathbb{P} O C N \mathbb{R} \mathbb{P N A C N}$ Date:
Introduction: A diesel power station (also known as stand by power station) uses \hat{a} diesel engine as prime mover for the generation of electrical energy.
\rightarrow This power station is generally compact and thees can be located where it is actually required.
\rightarrow This kind of power station can be rested fo. pirodrice limited amounts of electrical energy?
\rightarrow The diesel beiths inside the engine and the combrution process moves a fluid that fens the engine shalt and drives the alternator. The alternator in turns, convert mechanical energy into electrical energy.
Advantages and Disadvantages of disel Power Plant:
TAd vantages:-
(1) This is simple in design point of view.
(II) This required very small space.
(3) It can also be designed for portable use.
(4) It has quick starting facility, the small disel generator set can be started with in few seconds.
(5) It can also be stopped as when required stopping small size diesel power station, even easier than its starting.
(6) As these machines can easily be started and stopped as when required there may not be any stand by loss in the system.
(7) Cooling is easy and required smaller quantity of water in this type power station.
(8) Initial cost is lees than other types of power station.
(9) Thermal efficiency of diseR is quite higher than of coal.

Disadvantages :-
(1) As we have already mentioned, the cost of disel is very high compared to coal.. This is the main reason

Page -3
for which a diesel power plant is not getting popularity over other means. of generating power.
(2) Running cost of the plant is also very. high.
(3) The plant generally reused to produce small power requcitcment..
(4) cost of lubricants is high.
(5) Maintenance is quite complex and costs nigh.
(6) Plant does not work satisfactorily render overload conditions for a longer period.
Mn. Different Systems of Diesel Power Plant:In addition to diesel generator set or $D G$ set there are many other arixilliaries attached to at disel power station. Let's discress one by one:
Fuel Supply System:-
(1) In Fuel supply system there are one storage Rank strainers, fuel. Eransfer premp and all day feel tank. Storage tank where oil in stored.
(ii) Strainer: This oik then primp to dry tank., by means of transfer pump.
(III) During transferring from main tank to smaller dry tank, the oil passes through strainer to remove solid imprerities.
(iv) From dry tank to main tank there is another pipe.connection. This is over Flow pipe.
(v) This pipe connection is used to retiring the oil from dry tank, to main tank in the event of over flowing.
(vi) From dry tank the oil is injected in the disel engine by means of Rive injection primp.
Air supply System:.
(1) This system supplies necessary air to the engine for Feel combristion.
(I1) It consist of a pipe for supplying. (III) fitters are air to the engine.
(iII) fitters are provided to remove dust particles from air becarue these

Page - 5
particles can act as an abrasive in the engine cyllinder.
Exhaust System:-
(1). The enchacist gas is removed from engine to the atmosphere by means of an . exhacrst system.
(11) A silencer is normally reed in this system to reduce noise level of the engine. Cooling System :-
(1) The heat produced dice to internal combrestion, drives the engine. Bret some. parts of this heat raise the temperatierie of different parts of the engine.
(ii) High temperature may caress permanent damage to the machine. Hence, it is essential to maintain the overall temp. of the engine to a tolerable level..
(III) Cooling system of disel poller station does exactly so. The cooling system requires a water sorirce, water pump and cooling towers.
(iv) The premp circulates water through Signature..
cylinder send head jacket.
(v) The water takes away heat from the engine and it becomes hot: The hot water is cooled by cooling towers and is recircectated for cooling.
Y) Lrebrieating system:-
(1) This system minimises the we ar of rubbing surface of the engine. Here the lubricating oil is stored.. in main Rubricating oil. Rank.
(II). This Rubricating oil is drawn from the tank by means of oil pump. (iii) Then the $a i l$ is parsed through the oil filter for removing imprerities:
(iv) From the filtering point this clean lubricating $O i l$ delivered ko the diff. points of the machine.
Engine starting system:
(1) for starting a disel engine, initial rotation of the engine shaft is required. Signature:

Page - 7
(11) Untill the firing start and the rent runs with its own power.
(iii) For small $D G$ set, the in itial rotation of the shaft is provided by handles..

Governing system :
It is resed to control the speed of the engine by changing the fuel provide according to the Road increase or decrease.

Ireel Injection system?
We can say that this system is the heart of the disel engine as it can uses as:

1) filters that ensuring oil from dirt.
2) Meters the correct qriantity of feel to be injected into the cyllinder.
3) Also regulates the feel supply.
4) Atomize the fuel oil for better mixing with the hot oil.
5) And finally distribute the atomised fuel properly in the combustion chamber

Diesel Engine

